MultivariateNormalDistributionParam< Vector, Matrix > Class Template Reference

MultivariateNormalDistributionParam&lt; Vector, Matrix &gt; Class Template Reference#

Beluga: beluga::MultivariateNormalDistributionParam< Vector, Matrix > Class Template Reference
Beluga
beluga::MultivariateNormalDistributionParam< Vector, Matrix > Class Template Reference

Multivariate normal distribution parameter set class. More...

#include <multivariate_normal_distribution.hpp>

Public Types

using scalar_type = typename Vector::Scalar
 The scalar type.
 
using vector_type = Vector
 The vector type.
 
using matrix_type = Matrix
 The covariance matrix from Vector.
 

Public Member Functions

 MultivariateNormalDistributionParam ()=default
 Constructs a parameter set instance.
 
 MultivariateNormalDistributionParam (matrix_type covariance)
 Constructs a parameter set instance. More...
 
 MultivariateNormalDistributionParam (vector_type mean, matrix_type covariance)
 Constructs a parameter set instance. More...
 
bool operator== (const MultivariateNormalDistributionParam &other) const
 Compares this object with other parameter set object. More...
 
bool operator!= (const MultivariateNormalDistributionParam &other) const
 Compares this object with other parameter set object. More...
 
template<class Generator >
auto operator() (std::normal_distribution< scalar_type > &distribution, Generator &generator) const
 Generates a new random object from the distribution. More...
 

Detailed Description

template<class Vector, class Matrix>
class beluga::MultivariateNormalDistributionParam< Vector, Matrix >

Multivariate normal distribution parameter set class.

Constructor & Destructor Documentation

◆ MultivariateNormalDistributionParam() [1/2]

template<class Vector , class Matrix >
beluga::MultivariateNormalDistributionParam< Vector, Matrix >::MultivariateNormalDistributionParam ( matrix_type  covariance)
inlineexplicit

Constructs a parameter set instance.

Parameters
covarianceReal symmetric matrix that represents the covariance of the random variable.
Exceptions
std::runtime_errorIf the provided covariance is invalid.

◆ MultivariateNormalDistributionParam() [2/2]

template<class Vector , class Matrix >
beluga::MultivariateNormalDistributionParam< Vector, Matrix >::MultivariateNormalDistributionParam ( vector_type  mean,
matrix_type  covariance 
)
inline

Constructs a parameter set instance.

Parameters
meanA vector that represents the mean value of the random variable.
covarianceReal symmetric matrix that represents the covariance of the random variable.
Exceptions
std::runtime_errorIf the provided covariance is invalid.

Member Function Documentation

◆ operator!=()

template<class Vector , class Matrix >
bool beluga::MultivariateNormalDistributionParam< Vector, Matrix >::operator!= ( const MultivariateNormalDistributionParam< Vector, Matrix > &  other) const
inline

Compares this object with other parameter set object.

Parameters
otherParameter set object to compare against.
Returns
True if the objects are not equal, false otherwise.

◆ operator()()

template<class Vector , class Matrix >
template<class Generator >
auto beluga::MultivariateNormalDistributionParam< Vector, Matrix >::operator() ( std::normal_distribution< scalar_type > &  distribution,
Generator &  generator 
) const
inline

Generates a new random object from the distribution.

Template Parameters
GeneratorThe generator type that must meet the requirements of UniformRandomBitGenerator.
Parameters
distributionA reference to a standard normal distribution instance.
generatorAn uniform random bit generator object.
Returns
The generated random object.

◆ operator==()

template<class Vector , class Matrix >
bool beluga::MultivariateNormalDistributionParam< Vector, Matrix >::operator== ( const MultivariateNormalDistributionParam< Vector, Matrix > &  other) const
inline

Compares this object with other parameter set object.

Parameters
otherParameter set object to compare against.
Returns
True if the objects are equal, false otherwise.

The documentation for this class was generated from the following file: